
Grade 9/10 Math Circles

February 8

The Shape of You

Shapes! I quite like shapes. So let’s talk about shapes. The following three Math Circles seminars

are taken from a grad level course and some of my favorite mathematics. Let’s have some fun!

Introduction

What are some of the most basic shapes you can think of? Observe:

This is a dot.

This is two dots.

This is a line. (Hint: a line connects two dots)

This is three dots (no line).
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This is a line and a dot (welcome back, line!)

Guess what comes next? That’s right, two lines.

We’ll keep going, I guess. Three lines?

2



Drum roll... TRIANGLE

Stop and Think
Can you see the difference between three lines and a triangle? Can you see which shapes

“contain” other shapes? Can you think of the next shapes that will come in this pattern?

Fun fact: My four year old nephew can do this, but graduate level students sometimes can’t.

Let’s think about gluing these together!

Any shape of this form is called a Simplicial Complex. For brevity1, I will refer to these shapes

as “simplexes”.

1Saying “for brevity” in a sentence has never saved anyone any time. Neither has writing footnotes.
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Warm-Up
A big part of mathematicsa is giving different names to different things and calling it productive

work. So let’s be productive! When communicating ideas about simplexes, it might be useful

to have a consistent SYSTEM for writing down any possible shape that is made up of dots,

lines, triangles, tetrahedrons, etc. that may be glued together. The SYSTEM that I have

implicitely given you here is the easiest one: just draw the shapes!

But how else could you describe simplexes, so that someone else (who understands your

SYSTEM) would know exactly what you’re talking about, without any pictures? In the space

below, jot down some ideas for the most efficient, consistent set of rules for a SYSTEM like this

that you can think of – you could use words, numbers, brackets, letters, sounds, or any other

non-pictoral method of communication. Feel free to discuss ideas with the less stinky person

out of the two neighbours on your left and right.

aAccording to a very small minority of mathematicians that I asked.
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n-Simplexes

Consider the following simplex:

We need some words to describe this thing. First, the biggest “pieces” are called facets. For example,

the only facet above is the filled in triangle triangle GHI, since that is the highest dimensional piece

in the picture (everything else is either a dot or a line):

In general, the (unglued) “pieces” are called faces. Faces can only be dots, lines, triangles, etc.

It is helpful to say that a simplex contains its faces. For example, the faces above are all the

dots A,B,C,D,E,F,G,H,I,J, all the lines, AC,CB,CD,DH,HC,DE,JH,JG,GH,JI,HI,GI, and the trian-

gle GHI. Notice: all facets are faces, but not all faces are facets!

Last, I will also mention the simplex that doesn’t contain anything. It looks like this:

It is called the Irrelevant Complex.
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Theorem: Mathematicians can sometimes be mean.

Proof : They came up with the Irrelevant Complex and then called it irrelevant.

Discussion: we’ve already seen that every simplex contains faces that are “lower-dimensional”.

For example, a triangle contains the three lines and three dots that we draw in a triangle. Do

you think that we should say that an arbitrary complex contains the irrelevant simplex? Why

or why not?

Now that we’ve studied simplexes in general, let’s consider a natural family2 of simplexes.

Consider the simplest n-dimensional shapes (fill in the chart):

2In math, a family usually means “a collection of similar-looking things”. There are no brothers, sisters, or eccentric
uncles involved.
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Stop and Think
What’s a useful way to define the dimension of a complex, so that it matches your intuition?

We define the dimension of a face to be the number of dots in the face, minus 1. Does this match

our usual idea of dimension?

Bonus : What’s the dimension of the Irrelevant Complex?

One useful way to write down all the dimensional data of a simplex is a Dimension Vector3, which

is just a list of the number of faces of a particular dimension in a complex, for each dimension.

For example, taking the following simplex,

We would write its Dimension Vector as follows: (1,10,12,1). This corresponds to:

Dimension -1 0 1 2

Number of Faces 1 10 12 1

Note: Since every simplex has a facet of maximum dimension, if we kept going with our vector, it

would just have a bunch of zeroes all in a row. So you can stop counting faces once you’ve counted

all the faces (duh) and omit the zeroes.

Using your n-simplex chart in a previous page, count the number of faces for each dimension and

record your results below:

Hint: Try to make your columns line up nicely.

3What did I say about giving things funny names in math and calling it productivity??
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Which Simplex? Dimension Vector

-1-simplex

0-simplex

1-simplex

2-simplex

3-simplex

4-simplex

5-simplex

Stop and Think
Now put your hands in the air and wave ’em around like you just don’t care.

Just kidding. Can you spot any patterns in the above numbers? How do the numbers increase

or decrease? Why? Can you make a guess for what the next row will look like without drawing

and counting the 6-simplex?

See the next page for ***Spoilers***.
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Triangles All the Way Down

The chart above is known as Pascal’s Triangle. Here it is in its full glory:

Let’s make some new definitions. For two numbers 0 ≤ k ≤ n, we define a combination as the

number of faces of dimension k in an n-simplex. In other words, this is the (k-1)-th entry in

the f -vector for the n-simplex. We denote this number by the symbols(
n

k

)

Cute Fact

Have you seen this symbol before? On a calculator, you’d see this written as ”nCk”.

Some other interpretations (can you prove this?) of this number:(
n

k

)
= the number of faces of dimension k in an n-simplex (this is the definition)

= the number of ways to include k dots to make a k − 1 dimensional face in an n-simplex

= the number of ways to exclude k dots to make a n− k − 1 dimensional face in an n-simplex

Let’s PROVE our first big results for this Math Circles! We’ll need these results for later.
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Theorem 1
For all numbers 0 ≤ k ≤ n, (

n

k

)
=

(
n− 1

k

)
+

(
n− 1

k − 1

)
Proof: Notice what this formula represents: it says that to figure out what a number in Pascal’s

Triangle is, we just add the two numbers above it! (Check the picture of Pascal’s Triangle –

does this check out?).

To prove it, we only require to do a bunch of examples of calculating dimension vectors and

eventually get lazy with our counting. Suppose we are counting (k− 1)-dimensional faces in an

n-simplex. Let’s call one of the dots in the n-simplex D (for dot). Notice that if we ignored D

and all the lines that are connected to it, then we get an (n− 1)-simplex!

So instead of counting randomly, let’s count first the number of ways to pick k dots, where

we specifically don’t include the dot D, PLUS the number of ways to pick k dots, where we

specifically do include the dot D. In the second case, if we have already picked D, then we

might as well just focus on picking the other k−1 dots in the (n−1)-simplex we get by ignoring

D. As an exercise, work out the rest of the details on your own!

Hint: if you get stuck, try some examples! How many triangles in a 5-simplex? How many lines

in a 6-simplex? How many tetrahedrons in a 7-simplex?

On to Theorem 2!

Here’s the set-up. I have a problem. Here’s my problem. I’m a lazy student who has to run to my

8:30am lecture on campus. However, the streets in Waterloo look like this:
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Being a lazy student, every time I walk a block, I want to get closer to my destination: MC. So I’m

always going4 in the “downwards” direction, but I can choose at each intersection to get left or right.

Theorem 2: Path-Counting
If we overlay the grid above with Pascal’s Triangle, then the entry at each intersection is exactly

equal to the number of ways I can geta there from the top!

Proof: The proof of this will be covered next class, but I encourage you to try it yourself! For

additional information, see the Problem Set.

arun

This concludes the content for our first lecture! If you’d like to practice some more, see the Problem

Set. And come back next week for more fun stuff! If you have any questions or concerns (or cool

math), I am available over email at mgusak@uwaterloo.ca. I’m always happy to talk about cool

math.

This session touches on lots of math! This is math that you can continue doing in under-

graduate courses here at Waterloo. Mostly, the math here is what you’d see in combinatorics

(MATH239/MATH249), simplicial homology (PMATH467), and other topics in combinatorics

(CO439). Ask me about courses!

4running
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